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Recently, waves propagating with negative phase velocity �simply called antiwaves �AWs�� have attracted
great attention in the area of nonlinear oscillatory systems. In the present work we investigate the parameter
conditions for AWs. So far AWs have been revealed from systems slightly beyond Hopf bifurcation or some
other instabilities, and from some wave sources with certain restricted frequencies. Here we study general
oscillatory media �including generalized complex Ginzburg-Landau systems and Brusselator model� and
specify the parameter conditions of AWs by certain characteristic behaviors of the dispersion relation of the
systems. Moreover, we predict that AWs and NWs �normal waves with positive phase velocity� can be realized
at a same intrinsic parameter values but different pacing frequencies in parameter regions where the dispersion
relation exhibits a maximum or minimum. All numerical simulations are perfectly consistent with these theo-
retical predictions where the oscillatory systems are driven by external periodic pacings with 1:1 frequency
locking responses.
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I. INTRODUCTION

Recently, the topic of propagating waves with negative
phase velocity has attracted much attention in both fields of
linear optics �1–4� and nonlinear oscillatory systems �5–15�.
In nonlinear cases, inwardly propagating waves were re-
vealed first in the objects of spiral waves �also target waves�
called as antispirals �5,7�. In addition, it has been found that
waves propagating toward wave sources can also be gener-
ated by external pacing in more general wave forms called
simply as antiwaves �AWs� �12–15�. In comparison, we
name waves propagating outward from wave sources �with
positive phase velocity� as normal waves �NWs�. So far most
of works on AWs have been based on the complex Ginzburg-
Landau equations �CGLE�, which are generally valid in non-
linear systems slightly beyond Hopf bifurcations from sta-
tionary homogeneous states to homogeneous oscillations.
AWs in some reaction-diffusion models have also been in-
vestigated in the vicinities of certain Hopf bifurcations in
comparison with the corresponding CGLEs �9,13,15�. More-
over, previously all AWs were identified with certain given
wave frequencies. Up to date, the question of how to gener-
ally distinguish the parameter areas supporting AWs from the
areas supporting NWs, without associating to specific pacing
frequency or specific bifurcation conditions, has not been
clearly and thoroughly answered.

In the present paper we focus on the parameter conditions
on which AWs can occur with proper driving frequencies.
Throughout the paper, we simplify our discussion to one-
dimensional �1D� systems. The paper is organized as fol-
lows. In Sec. II, we consider an arbitrary oscillatory chemical
reaction-diffusion systems, and study its dispersion relation
in the vicinity of homogeneous oscillation. Based on this
analysis, we are able to classify different parameter regions
supporting AWs and NWs. In Sec. III, we propose a gener-

alized complex Ginzburg-Landau equation �GCGLE� model
which can describe oscillatory media near and far from Hopf
bifurcation, including the conventional CGLE as its special
case. A satisfactory advantage of GCGLE model is that it is
exactly solvable for its propagating wave solution and dis-
persion relation. We apply the general analysis of Sec. II to
this solvable model, and explicitly specify parameter regions
for NWs and AWs. In the situation far from Hopf bifurcation
we reveal from the dispersion relation that N-AW regions
where both NWs and AWs can be realized at a same param-
eter set by using pacings with different frequencies. In Sec.
IV, we study a chemical reaction-diffusion model, Brussela-
tor, of which the dispersion relation is no longer analytically
solvable �a restriction for most practical systems�. We show
how to classify NW, AW, and N-AW regions by using nu-
merical calculation of dispersion relation. The last section
includes brief discussion and conclusion on the main results
of the present work and the perspective of possible future
applications.

II. DISPERSION RELATION ANALYSIS OF NW AND AW
REGIONS IN OSCILLATORY CHEMICAL

REACTION-DIFFUSION SYSTEMS

Suppose we have a set of reaction-diffusion equations in
homogeneous n-dimensional �nD� space

du

dt
= f�a,u� + D�2u , �1a�

u = �u1,u2, . . . ,um�, f = �f1, f2, . . . , fm� ,

a = �ai,i = 1,2, . . . ,q�, D = �Dij��i, j = 1,2, . . . ,m� ,

�1b�

where variables u1 , ¯ ,um represent chemical concentra-
tions, n and q are space and control parameter dimensions,
respectively, and ai and Dij are reaction and diffusion control*Corresponding author; ganghu@bnu.edu.cn
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parameters, respectively. We assume that Eq. �1� has a stable
homogeneous limit cycle solution u�r , t�=u�t� of frequency
�0 �called the bulk frequency�. In Eq. �1� and in the follow-
ing we simplify our discussion to 1D systems and assume
that all the diffusion rates Dij are independent of the variable
concentrations u. All the following framework is valid for
general nD cases. For simplicity, we consider only 1D space
throughout the paper.

Here is a general question: if we use an external driving
with frequency �in as the wave source of system �1�, and this
driving force can successfully generate propagating waves of
a same frequency �, �=�in, then which would the propagat-
ing waves be, AWs or NWs? This problem has been an-
swered previously as �9,13,14�

NWs: if ��0 � 0 or ��0 � 0 and ��� � ��0� ,
�2a�

AWs: ��0 � 0 and ��� � ��0� . �2b�

The central task of this paper is to determine the param-
eter regions of �a ,D� supporting AWs and NWs. In order to
do so we start from the dispersion relation of propagating
waves, which can be expanded by a power series

� = f�k2� = �
�=0

�

f�k2�, �3a�

f0 = �0, �3b�

with � and k being the frequency and wave number of the
propagating waves, respectively. In Eq. �3a� � is a function
of k2 because of the second space derivative of the diffusion.

AWs are defined by negative phase velocity of �
k �0. It is

known that states of negative group velocity d�
dk �0 is un-

stable and cannot be observed in numerical simulations as
well as in experiments. Therefore, we accept only physically
meaningful cases of d�

dk �0 �the critical case of d�
dk is not

considered here�. Now we can reduce

d���
dk2 =

sgn �

2k

d�

dk
, sgn � = �1, � � 0

− 1, � � 0.
�

Since d�
dk �0, we conclude d���

dk2 �0 if and only if �
k �0, while

d���
dk2 �0 if and only if �

k �0. This concludes therefore

AWs:
d���
dk2 � 0, �4a�

NWs:
d���
dk2 � 0. �4b�

Equation �4� is valid for classifying AWs and NWs in
general oscillatory systems. For relating this criterion to ac-
tual system parameters, we now study the dispersion rela-
tions for small wave number k, where � is near the bulk
frequency �0, and we can approximate Eq. �3a� to

� 	 �0 + f1k2. �5�

Since ��−�0� is also small, we consider in this paper only
the situation when � and �0 have the same sign �i.e., ��0
�0�. Moreover, since k2�0, we should have ���0��
��0� for positive �negative� f1 in Eq. �5�. Thus ���� ��0�
can be observed only for �0f1�0, and ���� ��0� can be ob-
served only for �0f1�0. By jointly considering these facts
and conditions Eqs. �2� we come to the conclusion,

AWs: for �0f1 � 0, �6a�

NWs: for �0f1 � 0. �6b�

The essential points of Eqs. �6� are the following: First, these
results are valid for general oscillatory systems which might
be far away from Hopf bifurcation conditions. The only re-
striction is that the k2 is small and thus � is not far from �0.
Second, the quantities in Eqs. �6� classifying AWs and NWs
�i.e., the bulk frequency �0 and the dispersion coefficient f1�
are determined totally by the parameters of the autonomous
oscillatory system Eqs. �1� �not related to external pacing
frequency �in, or say, frequency � of propagating waves is
not involved�, and this is sharply different from the condi-
tions of Eqs. �2� where frequency � is a necessary quantity
in determining AWs and NWs. With Eqs. �6� we conclude
that in a reference homogeneous oscillation with fixed bulk
frequency �0, the phase boundary separating AW and NW
regions are clearly f1=0 and �0=0 with �0 and f1 being
system parameters. In comparison, in all previous works
�9,13,14� these boundaries are identified with �=0 and k
=0, where � and k are quantities characterizing propagating
waves.

III. NW AND AW PARAMETER REGIONS
IN GENERALIZED COMPLEX

GINZBURG-LANDAU
EQUATIONS

In order to illustrate the above argument, we take the fol-
lowing solvable and spatially one-dimensional oscillatory
system as our example:

ẋ = xg�x2 + y2� − yh�x2 + y2� +
�2x

�r2 − �
�2y

�r2 , �7a�

ẏ = yg�x2 + y2� + xh�x2 + y2� +
�2y

�r2 + �
�2x

�r2 , �7b�

where x and y may be linear combinations or even compli-
cated functions of the chemical concentrations ui, i
=1, . . . ,m; g and h are real functions of R2=x2+y2 which are
assumed to be expandable as g�R2�=�0+�1R2+�2R4+¯,
h�R2�=	0+	1R2+	2R4+¯; r is the space coordinate. De-
fining complex variable A=x+ iy, Eq. �7� can be transformed
to a GCGLE,

Ȧ�r,t� = A„g��A�2� + ih��A�2�… + �1 + i���2A . �7c�

By specifying g��A�2�=1− �A�2, h��A�2�=	1�A�2 we can reduce

GCGLE to the conventional CGLE: Ȧ�r , t�=A
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− �1− i	1�A�A�2+ �1+ i���2A. The conventional CGLE con-
siders oscillatory media near and beyond Hopf bifurcation
while GCGLE �Eqs. �7a� and �7b�� allows us to study oscil-
lations far from Hopf bifurcation where some essentially new
features may be observed as we will see below.

A satisfactory advantage of Eq. �7� is that the propagating
waves and the dispersion relation of the system is exactly
solvable. In Eq. �7� a homogeneous periodic oscillation in a
closed circle with radium R0,

x2 + y2 = R0
2, g�R0

2� = 0, �8a�

exists in x−y phase plane, which oscillates with bulk fre-
quency

�0 = h�R0
2� , �8b�

and the autonomous homogeneous solution reads

x�t� = R0 sin��0t + 
�, y�t� = R0 cos��0t + 
� �9�

with 
 determined by initial conditions. Considering planar
waves with wave number k, the oscillatory circle is modified
to

x2 + y2 = Rk
2, g�Rk

2� − k2 = 0, �10a�

and the dispersion relation of Eq. �3a� can be specified to

� = h�Rk
2� − �k2 = h„g−1�k2�… − �k2, �10b�

and then the solution of waves reads

x�r,t� = Rk sin��t + kr + 
�, y�r,t� = Rk cos��t + kr + 
� .

�11�

Now conditions Eqs. �5� can be specified to

AWs: if h�R0
2�
h��R0

2�
g��R0

2�
− �� � 0, �12a�

NWs: if h�R0
2�
h��R0

2�
g��R0

2�
− �� � 0,


note �0 = h�R0
2�, f1 =

h��R0
2�

g��R0
2�

− �� �12b�

It is emphasized that Eqs. �7� can include oscillatory me-
dia far from Hopf bifurcation condition as well as it takes
conventional CGLE as its special case. For instance, they can
show coexistence of multiple stable limit cycles which are
not allowed in the vicinity of a Hopf bifurcation. Equations
�8�–�12� are then valid disregarding the distance from a Hopf
bifurcation. However, there is a restriction that they are valid
for � not far from the bulk frequency �0 of the reference
homogeneous oscillations.

We study further some special cases of Eqs. �7�, and com-
pare our analytical predictions of Eqs. �12� with numerical
simulations.

Example (i).

g�x2 + y2� = 1 − �x2 + y2�, h�x2 + y2� = 	1�x2 + y2� .

�13�

This is exactly the case of conventional CGLE. Now we
have R0=1 , Rk=�1−k2, leading to

� = 	1 − �	1 + ��k2, �14a�

AWs: − 	1�	1 + �� � 0, �14b�

NWs: − 	1�	1 + �� � 0. �14c�

Note in Eq. �14b�, we conclude that we observe only AWs
for �=0 �identical diffusion rates of chemical components�.
Though this conclusion seems to be strange, it is correct for
the amplitude equation CGLE. However, it is usually not
correct for original oscillatory media Eq. �1� because in de-
riving CGLE a large eigenfrequency of the Hopf bifurcation
�h has been removed by the transformation to amplitude
equation �A→Aei�ht�. Nevertheless, this original eigenfre-
quency should be taken into account in determining AWs and
NWs in Eq. �2�. Introducing 	0 in Eq. �7�, we can include
this bulk frequency and correctly predict NW and AW re-
gions in original oscillatory systems. Namely, the slightly
modified form of CGLE �A

�t = �1+ i	0�A− �1+ i	1��A�2A
+ �1+ i���2A can correctly classify NW and AW parameter
regions at �=0 by including this eigenfrequency at Hopf
bifurcation.

Example (ii).

g�x2 + y2� = 1 − �x2 + y2� ,

h�x2 + y2� = 	0 + 	1�x2 + y2�, � = 0. �15�

Under the conditions of Eq. �15�, Eqs. �7� do not contain
diffusion dispersion ��=0�, but include both linear and non-
linear circulations �	0�0, 	1�0�. Then we have R0
=1 , Rk=�1−k2, leading to

� = �	0 + 	1� − 	1k2, �16a�

AWs: − �	0 + 	1�	1 � 0, �16b�

NWs: − �	0 + 	1�	1 � 0. �16c�

A prediction in Eqs. �15� and �16� is that both AWs and NWs
can be observed in oscillatory systems, which have unit dif-
fusion matrix �without diffusion dispersion�. Moreover this
classification is determined by different combinations of 	0
and 	1. This agrees with the rich behaviors of practical os-
cillatory media.

Example (iii).

g�x2 + y2� = − 2 + 3�x2 + y2� − �x2 + y2�2,

h�x2 + y2� = 	0 + 	1�x2 + y2� . �17�

This model is much more complicated than models �13� and
�15�. First, model �17� is bistable. It has a stable fixed point
R2=x2+y2=0, and a stable limit cycle R2=2. That is quite
not the case in the vicinity of Hopf bifurcation. Moreover the
two stable solutions are separated by an unstable limit cycle
R2=1. Our study focuses on the reference oscillatory state of
R0=�2. Numerically, we drive the system with the initial
stable homogeneous oscillation from the left boundary of the

NONLINEAR WAVES WITH NEGATIVE PHASE VELOCITY PHYSICAL REVIEW E 80, 036211 �2009�

036211-3



1D chain with frequency �in, and we consider only the case
that the system has 1:1 response ��=�in� to the driving.
Around the reference oscillation we have R0=�2, Rk

2

= 3+�1−4k2

2 , and

� = 	0 + 	1
3 + �1 − 4k2

2
− �k2

= �	0 + 2	1� + f1k2 + f2k4 + ¯ ,

f1 = − �� + 	1�, f2 = − 2	1. �18a�

Second, the dispersion relation Eq. �18a� is nonlinear with
respect to k2 �it is linear in both Eqs. �14a� and �16a��, and
we will find later that this nonlinearity can cause some inter-
esting new features around f1=0. Considering Eqs. �18a� and
�5�, we predict

AWs: − �	0 + 2	1��	1 + �� � 0, �18b�

NWs: − �	0 + 2	1��	1 + �� � 0. �18c�

In Eqs. �14�, �16�, and �18� the quantity of wave frequency �
does not enter into the conditions distinguishing AWs and
NWs, unlike conditions Eqs. �2�. This indicates that Eqs.
�14�, �16�, and �18� give the parameter regions necessary for
AWs and NWs, where all proper pacing frequencies can suc-
cessfully generate traveling waves in the given media.

FIG. 1. Distributions of parameter regions for NW, AW, and
N-AW motions of Eqs. �7�. N-AW region is the parameter domain
where both NWs and AWs can be produced at a same parameter set
by driving the system with ���� ��0� and ���� ��0�, respectively. In
comparison, in NW �AW� region we can observe NWs �AWs� with
���� ��0� ����� ��0�� only. � is the frequency of propagating waves
and �0 is the frequency of homogeneous oscillation. Solid lines are
theoretical predictions of the boundaries of f1=0 and �0=0; circles
are numerical plots of Eq. �19�. In this and all the following figures
for Eq. �19� we always take F=2.0. Numerical results coincide with
the theoretical predictions. �a� Model �13� computed. �b� Model
�15� computed. �c� Model �17� computed with 	0=0.6. In all Figs.
1–5 numerical simulations are made in 1D space with L=300 space
size. Pacing is applied at the left boundary of the 1D medium. Time
step �t=0.0025 and space step �r=0.5 are used for Runge-Kutta 4
algorithm with no-flux boundary condition. In addition, as long as
the system is fully driven by pacing, the propagating wave fre-
quency � is equal to the pacing frequency �in, �=�in.

FIG. 2. Theoretical �solid lines� and numerical �circles� results
of dispersion lines of Eqs. �7�. The circles are numerated by taking
Eq. �19�. �a� Model �13�, A and B sets in Fig. 1�a�; �b� Model �15�,
C and D sets in Fig. 1�b�; �c� Model �17�, E and F sets in Fig. 1�c�.
Solid and dashed lines are theoretical predictions of Eqs. �14a�,
�16a�, and �18a� for �a�, �b�, and �c�, respectively. The dashed line in
�c� indicates NWs with negative group velocity � d�

dk �0� which can-
not be observed numerically.

FIG. 3. Time-space patterns of AWs and NWs numerically com-
puted from Eq. �19� by taking the parameter sets in Fig. 1. The gray
scale shows the numerical value of variable y �dark for small y and
light for large y�. �a� AWs with k2=0.05, A �	1=0.5, �=0.5, �
=�in=0.45�; �b� NWs with k2=0.075, B �	1=0.5, �=−0.9, �
=�in=0.53�; �c� AWs with k2=0.033, C �	0=0.4, 	1=0.6, �
=�in=0.98�; �d� NWs with k2=0.033, D �	0=1.6, 	1=−0.6, �
=�in=1.02�; �e� AWs with k2=0.064, E �	0=0.6, 	1=0.2, �
=0.1, �=�in=0.98�; �f� NWs with k2=0.10, F �	0=0.6, 	1

=0.2, �=−0.7, �=�in=1.05�, respectively. Parameter sets A, B,
C, D, E, and F are marked in Fig. 1. These patterns coincide with
the classifications of motion types in Fig. 1.

FIG. 4. Analytical and numerical dispersion-relation lines of
system �17� with 	0=0.6, 	1=0.7, �=−0.95 �parameter set G in
Fig. 1�c� in the N-AW region�. In the segments NW and AW, nu-
merical results are consistent with the theoretical predictions of Eqs.
�18a� and �21b�. The dashed line represents negative group velocity
�Eq. �21b� describes approximately this interval�, and the corre-
sponding waves are not numerically observed.
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For numerically producing propagating waves we simu-
late 1D chain of Eq. �7� with periodical pacing at the left
boundary �r=0� as

Ȧ�r,t� = A„g��A�2� + ih��A�2�… + �1 + i���2A + ��r�Fei�int.

�19�

In Figs. 1�a�–1�c� we plot both theoretical and numerical
results of AW and NW regions in parameter planes of Eqs.
�13�, �15�, and �17�, respectively. In these figures numerical
simulations are well consistent with the predictions of pa-
rameter regions supporting AWs and NWs. The theoretically
predicted and numerically computed dispersion relations of
the parameter sets A ,B; C ,D; and E ,F shown in Fig. 1 are
presented in Figs. 2�a�–2�c�, respectively. Again direct nu-
merical computations of Eq. �19� agree with the theoretical
predictions for all three models �13�, �15�, and �17�. The
time-space behaviors of AWs and NWs with different param-
eter sets are shown in Fig. 3.

So far in all previous works oscillatory media always
have diffusion dispersion or unsymmetrical diffusion matrix
when negative phase velocity is observed. In Eq. �15� we
predict for the first time that AWs may appear in oscillatory
systems without diffusion dispersion ��=0� while 	0+	1
and 	1 have the same sign. All numerical results of Figs.
1�b�, 2�b�, and 3�c� support this theoretical analysis.

Conclusions Eqs. �6� are exact if the linear dispersion
relation Eq. �5� is exactly valid. Moreover this is the case of

Eqs. �14a� and �16a�, leading to the distributions of Figs. 1�a�
and 1�b�, where AW and NW regions are clearly separated by
the condition f1=0. Generally, high orders of k2 exist in the
dispersion relation, as we see in Eq. �18a�. These nonlinear
k2 terms lead to some new features, of which the existence of
N-AW region in Fig. 1�c� is the most interesting one. In this
region, both NWs and AWs can be observed in the medium
at a same parameter set by taking pacing with different fre-
quencies. This is a typical behavior far from Hopf bifurca-
tion. In the parameter region around f1=0, high orders of k2

can play role in determining propagating waves. Suppose
�f1�1 while f2�0 in expansion Eq. �3�, we can replace the
approximation Eq. �5� by

� 	 �0 + f1k2 + f2k4 �20�

for the leading terms. Equation �20� can be solved as

�0f1 � 0, �0f2 � 0:��� − ��0� � 0 NWs,

�0f1 � 0, �0f2 � 0:��� − ��0� � 0 for k2 � −
f1

2f2
NWs,

�21a�

��� − ��0� � 0 for k2 � −
f1

f2
AWs,

−
f1

2f2
� k2 � −

f1

f2
unobservable waves with group velocity vg � 0, �21b�

�0f1 � 0, �0f2 � 0:��� − ��0� � 0 AWs,

�0f1 � 0, �0f2 � 0:��� − ��0� � 0 for k2 � −
f1

2f2
AWs, �21c�

��� − ��0� � 0 for k2 � −
f1

f2
NWs,

−
f1

2f2
� k2 � −

f1

f2
unobservable waves with group velocity vg � 0, �21d�

where vg= d�
dk indicates the group velocity of propagating

waves.
Note, all analytical predictions of Eqs. �21a�–�21d� are

drawn by neglecting the higher orders ��=3
� f�k2� in the dis-

persion relation Eq. �3a�. Summarizing all results of Eqs. �6�
and �21�, we conclude the following:

�i� For �0f1�0, we can produce NWs with ���� ��0�;
�ii� For �0f1�0, we can produce AWs with ���� ��0�;

Around f1	0, f2�0, we can generically identify N-AW
region where both NWs and AWs can be produced at a same
parameter set with wave sources having different frequen-
cies. Precisely, we observe the following:

�iii� For �0f2�0, the NW region invades the boundary of
f1=0, and thus the N-AW region appears in the area of
�0f1�0;

�iv� For �0f2�0, the AW region crosses the boundary of
f1=0, and the N-AW region appears in the area of �0f1�0;
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In both cases �iii� and �iv� N-AW region appears for
f1f2�0.

�v� The N-AW parameter domain ends at the parameter
condition where the wave number k2��=�0�	−

f1

f2
is too

large that waves with k2�k2��=�0� can no longer be sup-
ported by the medium. This condition determines the left-
low boundary of the N-AW domain in Fig. 1�c�. However,
there is no analytical precise prediction available for this
phase boundary so that it can be determined only numeri-
cally.

All the above points are concluded based on the general
expansion of dispersion relation Eq. �20�, and numerical re-
sults in Fig. 1�c� are consistent with these theoretical analy-
sis. Since nonlinear ���−k2 dispersion relations exist gener-
ally, the distributions of Fig. 1�c� is expected to be general in
realistic oscillatory systems, while Figs. 1�a� and 1�b� �with-
out N-AW region� are observed only for particular systems
of probability zero. In Fig. 4 we plot the dispersion relation
of Eq. �18a� at the parameter set of G in Fig. 1�c�. Solid
curve represents the theoretical prediction Eq. �18a� while
circles are plotted by numerical simulation of Eq. �19�. It is
obvious that numerical results coincide with theoretical pre-
dictions. Numerical computation cannot produce the dashed
segment in Fig. 4 because in this part waves have negative
group velocity vg, they are unstable and thus numerically
unobservable. In Fig. 5 we present various spatiotemporal
patterns of waves in NW, AW, and N-AW regions, and all the
predictions of Eqs. �21� are numerically observed.

IV. PARAMETER REGIONS SUPPORTING NWS
AND AWS IN BRUSSELATOR

For Eqs. �7� the dispersion relation is explicitly comput-
able. However, for general chemical reaction-diffusion sys-
tems analytic results of dispersion relation are not available.
Nevertheless, we can numerically compute the dispersion re-
lation, and examine the theory of Eqs. �4� �or equivalently

Eqs. �6��. Let us consider a chemical reaction-diffusion
model, Brusselator, which has been investigated extensively
�9,12,13�,

u̇ = a − �1 + b�u + u2v + �2u + ��r�F sin��int� , �22a�

v̇ = bu − u2v + ��2v + ��r�F cos��int� , �22b�

where u and v are concentrations of two chemical variables.
We consider a 1D medium in the physical space �0,L�, and
adopt no-flux boundary condition. A periodic pacing is ap-
plied to the left boundary of the medium. For b�1+a2, sys-
tem �22� has a stable homogeneous limit cycle solution when
F=0. By applying nonzero F, characteristically different
wave solutions can be generated at different sets of param-
eters. The parameter regions can be classified to three types:
AW, NW, and N-AW regions, similar to those in Fig. 1�c�.

We apply Runge-Kutta 4 algorithm for numerical simula-
tions and use �t=0.0025, �r=0.5 for time and space dis-
creteness, F=2.0. The correctness of all the following results
have been justified by varying the time and space steps. In
Fig. 6�a� we fix a=1.0, b=3.2, �=0.5 and plot the output
frequency � �i.e., the frequency of variables u�t� and v�t� in
space region far away from the point being paced� against
the pacing frequency �in. It is shown that in an �in interval
�0.843��in�1.111�, we have �=�in, which is called 1:1
driven region. In this region the system is fully driven by the
pacing. In the following we study the behaviors of NWs and
AWs in this 1:1 driven region ��=�in� only. In Fig. 6�b� we
plot ��� against the square of wave number k2 within the 1:1
parameter region of Fig. 6�a�. We find that ��� increases mo-
notonously against k2. This behavior satisfies condition of
Eq. �4b�, and we thus predict NWs in this domain. In Fig.
6�c� we use pacing frequency of point P in Fig. 6�b� and plot
the time-space pattern for the asymptotic waves which are
clearly NWs. For Figs. 6�d�–6�f� we do exactly the same
computation as we do for Figs. 6�a�–6�c�, respectively, with

FIG. 5. Numerical results of time-space patterns of Eq. �19� with various driving frequencies in different parameter regions. �a� and �b�
for model �13�; �c� and �d� for model �15�; �e�, �f�, �g�, and �h� for model �17�. �a�, �c�, and �e� In AW regions we cannot produce NWs for
the driving ��in�� ���	��0�: �a� Set A in Fig. 1�a�, ��in�=0.53� ���	��0�=0.5; �c� Set C in Fig. 1�b�, ��in�=1.02� ���	��0�=1.0; �e� Set E
in Fig. 1�c�, ��in�=1.05� ���	0. �b�, �d�, and �f� In NW regions one cannot produce AWs for ��in�� ���	��0�: �b� Parameter set B in Fig.
1�a�, ��in�=0.45� ���	��0�=0.5; �d� Set D in Fig. 1�b�, ��in�=0.98� ���	��0�=1.0; �f� Set F in Fig. 1�c�, ��in�=0.98� ���	0. �g�, �h� Set
G in Fig. 1�c�. In N-AW region one can successfully produce both AWs and NWs at a same parameter set: �g� AWs with ���= ��in�=1.99,
��0�=2.0, k2	0.0529 and �h� with NWs ���= ��in�=2.01, ��0�=2.0, k2	0.0277.
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parameters replaced by a=1.0, b=3.2, �=2.5. At this pa-
rameter set we can also identify 1:1 region of � /�in in Fig.
6�d� �0.775��in�0.839�. In Fig. 6�e� we find that in this
1:1 driven region ��� decreases with k2, indicating condition
Eq. �4a� and predicting AWs. Indeed, we find numerically
negative phase velocity in Fig. 6�f� by taking �in at point Q
in Fig. 6�e�.

For system Eqs. �22� we cannot give analytical dispersion
form and cannot theoretically predict the parameter regions
for NWs, AWs, or N-AWs. However, with numerical com-

putation of dispersion relation we can specify the distribu-
tions of parameter regions with different characteristic mo-
tions. In Fig. 7�a� we plot AW, NW, and N-AW regions in
b−� parameter plane with a=1.0. In NW �AW� region we
can identify a finite interval of 1:1 � /�in driven region like
Fig. 6�a� �Fig. 6�d�� where monotonously increasing �de-
creasing� ���−k2 curve is explored as Fig. 6�b� �Fig. 6�e��,
and thus NWs �AWs� can be observed as Fig. 6�c� �Fig. 6�f��.
In the N-AW region, both AWs and NWs of frequency �
=�in can be generated by pacings with different frequencies
�in��0 and �in��0, respectively. This feature is exactly
the same as that shown in Fig. 1�c�. In Fig. 7�b� we fix b
=3.2, and specify 1:1 AW and NW regions by varying pa-
rameter � along the dotted line in Fig. 7�a� and by changing
the pacing frequency �in. Unlike Fig. 7�a�, where AW and
NW regions overlap in the N-AW parameter region in b−�
plane, in Fig. 7�b� AW and NW regions are always separated
in �−� plane. However, the � interval of AWs enters the
region of NWs �though with different frequencies�, and this
is just the characteristic of N-AW region.

FIG. 6. Numerical results of AW, and NW waves for 1D Brus-
selator model Eqs. �22�. Periodic driving is applied at the left
boundary �r=0�. �t=0.0025 and �r=0.5 for Runge-Kutta 4 algo-
rithm with no-flux boundary condition. �a�, �b�, and �c� a=1.0, b
=3.2, �=0.5. �a� � vs �in. 1:1 response ��=�in� is observed in the
interval 0.843��in�1.111. �b� k2 vs ��� in the 1:1 response inter-
val. Monotonous increasing tendency is observed, and NWs are
expected. �c� NWs are numerically produced by the driven fre-
quency �=�in=0.95 �point P in �b��. k2	0.075. �d�, �e�, and �f�
The same as �a�, �b�, and �c�, respectively, with parameter set
changed to a=1.0, b=3.2, �=2.5. �d� A 1:1 driven region appears
in 0.775��in�0.839. �e� Monotonous decreasing dispersion rela-
tion is observed in the 1:1 driven region, and AWs are expected in
this parameter interval. In �f� we use �=�in=0.80 �point Q in �e��,
and AWs are observed, with k2	0.068. �c�, �f� The gray scale
shows the numerical value of variable v �dark for small v and light
for large v�.

FIG. 7. �a� Distributions of AW, NW, and N-AW regions of Eqs.
�22� in b−� parameter plane. Circles are numerical results, and
continuous curves are fitting lines. The dashed curve f1=0 is judged
by Eqs. �21� and verified by direct numerical computation of dis-
persion curves. �b� b=3.2 �the dotted line in �a��. Distribution of
AW, NW, and N-AW regions plotted in �−� plane. In the interval
1.7���1.9 we can produce both NWs and AWs at a same � by
using different driving frequencies ��=�in��0�0 for NWs and
0��=�in��0 for AWs�. The N-AW domain coincides with that in
�a�.

FIG. 8. The same as Fig. 4 with Brusselator Eqs. �22� computed
numerically. a=1.0, b=3.2, �=1.8. Circles represent numerical
data, while dashed line is drawn by smooth fitting with circles.

FIG. 9. The same as Fig. 5 with model Eqs. �22� computed. �a�
a=1.0, b=3.2, �=2.5 �point A in Fig. 7�a��. ��in�=0.9� ���
	��0�=0.8418 is used in AW region. The system is not driven. �b�
a=1.0, b=3.2, �=0.5 �point B in Fig. 7�a��. ��in�=0.8� ���
	��0�=0.8418 is used in NW region. The system is also not driven.
�c�, �d� a=1.0, b=3.2, �=1.8 �point C in Fig. 7�a��. �c� ���
= ��in�=0.84� ��0�, k2	0.0958. AWs are observed. �d� ���= ��in�
=0.843� ��0�, k2	0.0161. NWs are observed. Coexistence of NWs
and AWs are observed only in the N-AW domain, but never in NW
or AW region.
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In Fig. 8 we do the same computation as for Fig. 4 with
model replaced by Eqs. �22�, and only numerical data are
presented �there is no analytical result available�. The dashed
line, representing numerically unobservable waves with
negative group velocity, is estimated by a smooth continuous
fitting to link the NW and AW dispersion segments. From the
humped shape of the dispersion curve we judge, based on
Eqs. �21�, that in Fig. 7�a� f1=0 occurs on the upper bound-
ary of N-AW domain. Moreover AW region slightly crosses
the f1=0 boundary, invades the domain of �0f1�0, where
the high orders of k2 terms of the dispersion relation play
role in producing AWs, as we predicted in Eq. �21b�. In Fig.
9 we do the same computation as for Fig. 5 with model Eqs.
�22�. We show that in the N-AW domain we can produce
both NWs and AWs with a same parameter set C in Fig. 7�a�
by taking different pacing frequencies ���in�� ��0� for AWs
�Fig. 9�c�� and ��in�� ��0� for NWs �Fig. 9�d���. However, in
NW and AW domains we can produce only NWs for set B
and AWs for set A, but not both. With ��in�� ��0� in AW
region and ��in�� ��0� in NW region, we can only get waves
with a frequency � far away from the pacing frequency �in
����in� but close to the bulk frequency �0 ��	�0� �Figs.
9�a� and 9�b��. These behaviors are precisely the same as
those in Figs. 5�a�–5�d�. These numerical observations are
again consistent with the theoretical predictions of Eqs. �21�.
They show the robustness of the features in Fig. 1�c� for
general oscillatory systems with nonlinear ���−k2 dispersion
curves. It is obvious that in all cases tested �i.e., in all AW,

NW, and N-AW regions� ��� is always larger �smaller� than
��0� for NWs �AWs�. These observations agree with the pre-
vious conclusions of Eqs. �2� �9,13,14�.

V. CONCLUSION

In conclusion we have defined parameter conditions sup-
porting NWs and AWs in general oscillatory systems, based
on the analysis of dispersion relations. The validity of the
conditions is not related to special source frequency and not
restricted to the vicinity of Hopf bifurcations nor other wave
instabilities. Numerical computations are consistent with the
theoretical predictions. Moreover, we found a parameter do-
main around the vicinity of the turning boundary f1=0 where
periodic pacing can produce both AWs and NWs but with
different driving frequencies at a same autonomous param-
eter set. All the results in this paper clearly show where and
how one can observe waves with negative phase velocity,
and this can help experimentalists to produce AWs in
practical.
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